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ABSTRACT: The inter-annual variability (IAV) of the solar resource is an important uncertainty component in 

annual energy production (AEP) estimates of photovoltaic (PV) plants. Based on studies in the Mediterranean and 

Black Sea region, a figure of 4 to 6% is sometimes used by consultants. For the extremely arid climates in the 

Atacama Desert in the North of Chile such generic values are expected to unnecessarily penalise developers seeking 

project financing. In the absence of reliable and consistent long-term ground measurements for this region, and based 

on previous in-house validation work and industry experience, long-term mesoscale satellite-derived datasets from 

the SolarGIS® database were found to be the best available data source to estimate the IAV of the global horizontal 

irradiance (GHI). It was found that none of the 14 sample sites considered in this study displayed an IAV exceeding 

2%. While this result is subject to limitations, the observed performance of the model relative to measured data 

suggests that the uncertainty in the IAV value is small compared to the systematic error that otherwise arises from 

using a 4 to 6% generic figure for sites in the Atacama. 
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1 INTRODUCTION 

 

The prediction of the annual energy production 

(AEP) of a photovoltaic (PV) plant is subject to a number 

of uncertainties. These can be grouped into three main 

categories:  

 

i. variability of the solar resource (depending 

on the time period considered),  

ii. uncertainty in relation to the measurement of 

the solar resource, and  

iii. uncertainty associated with the simulation.  

  

The inter-annual variability (IAV) of the solar 

radiation, which is the main driver of category i), is 

therefore a key input into the financial assessment and 

valuation of a PV project. It quantifies how much a 

yearly value can vary from the long-term average, and 

ultimately influences the debt-ratio and return on 

investment as it directly intervenes in the Pxx1 

calculation. 

A generic value of 4 to 6%, calculated in [1] for the 

Mediterranean and Black Sea region, is sometimes used 

in the industry for the IAV of the global horizontal 

irradiance (GHI). The study carried out in [1] covers a 

wide variety of climates and geography, and shows that 

the IAV can range from below 2% in the arid regions to 

10% in the more mountainous regions of the studied area. 

The present study focusses on the Atacama Desert in 

the North of Chile, which the World Wide Fund for 

Nature defines as the ecoregion extending from a few 

kilometres south of the Peru-Chile border to about 30° 

southern latitude, spreading over 10° in latitude. It has 

the highest average GHI in the world and is also the 

driest region, where in some locations no rain is recorded 

for years. 

Considering the geographic and climatic characteristics 

present within this area, the aforementioned generic 4 to 

6% figure obtained from [1] is hypothesised to be 

                                                                 
1 Pxx: Banks and investment firms working on renewable 

energy projects often require P90, P95 or P99 values 

conservative, and an attempt will be made to estimate a 

more realistic value within this study. 

 

 

 
 Figure 1: Yearly average GHI in the northern half of 

Chile. Source: SolarGIS [2] 

http://www.gter.cl/
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2 DATA AND METHODOLOGY 

 

2.1 SolarGIS database 

The SolarGIS® satellite-to-irradiance model takes 

input from 4 geostationary satellites (MSG, MFG, GOES 

and MTSAT), covering the almost entire surface of the 

Earth. Data for South America, and particularly Chile, is 

entirely collected by the GOES-EAST mission. Figure 2 

shows the structure of the model generating SolarGIS [3] 

databases. 

 Figure 2: GeoModel Solar scheme. Source: SolarGIS [3] 

 

Other inputs to the model include [4]: 

 Cloud Index and Snow Index calculated from 

Meteosat and GOES satellites [5] 

 Water Vapour derived from GFS database [6] 

 Atmospheric Optical Depth calculated from 

MACC database [7] 

 Snow Depth from GFS and CSFR [8] 

 Elevation and horizon profile calculated from 

Digital Elevation Model SRTM-3 [9] 

 

The calculation methodology for cloud transmittance and 

clear-sky irradiance is described in several papers [10], 

[11], [12], [13]. 

The model outputs used in this study are long-term2 

hourly time-series of GHI provided at the model node 

nearest to the required location3. 

 

2.2 Ground measured data and model validation 

Ground measured data from various sites across the 

world have been used by SolarGIS® for validations of 

the model. As in [1], the present study also assessed the 

accuracy of the modelled data within the study region.  

It is difficult to source suitable historic measured 

reference data in Chile. Only as recent as in 2009, the 

Comisión Nacional de Energía (CNE) started a public 

measurement campaign, implementing a network of 9 

solar irradiance measurement stations across the Atacama 

region for the benefit of renewable energy industry. 

Given its specific objective, this network is the most 

reliable of all public measurement networks and, despite 

some of its shortcomings (such as lack of publicly 

available maintenance records), was selected for the 

validation of the modelled data. In addition to the 9 CNE 

sites, measured data from 6 stations operated by project 

developer Mainstream Renewable Power (MRP), relating 

                                                                 
2 14 years (from 1999 to 2012), except for one site which 

has only 13 years (1999 to 2011). 
3 The model has a spatial resolution of 1km. 

to a further 5 locations, was included in the comparison. 

Figure 3 shows the location of the 14 sites considered. 

They are reasonably representatively placed to cover the 

study area, which is approximately 280,000km2 in size.  

 

 
Figure 3: Location of ground measurement stations from 

both CNE and MRP networks.  

Base map: © OpenStreetMap contributors [14].   

 

For comparison, 90 sites were used in [1] to cover an 

area of about 10.5 million km2. In all cases, measured 

data is recorded every 2 seconds and averaged every 

10min, providing 10min time-series for up to 3.7 years 

depending on the site, see Table 1. 

 It is important to note that while both MPR and CNE 

provide secondary standard measurements, only MRP 

provide a thorough record of the regular cleaning regime 

of the pyranometers, maintenance and calibration 

parameters. Therefore, CNE data is assumed to be less 

reliable.  

Both CNE and MRP networks have a measurement 

station installed within 5km from each other at the 

location Pozo Almonte. A comparison was therefore 

additionally carried out between measured data from 

these two stations, over a 19 months concurrent period. It 

was found that the mean bias for the whole period was 

1.9% of the average GHI measured at the MRP station, 

daily RMSE is 3.4%, and monthly RMSE is 2.6%. 

Despite the aforementioned shortcomings of the CNE 

datasets, the bias and RMSE were small and it was 

concluded that using this data should not significantly 

affect the IAV estimation. 

  

 

 



Sites - North to South Validation period [years] 

MRP 2 2.5 

MRP 1 0.9 

Pampa Camarones 3.1* 

Pozo Almonte 3.7* 

MRP 3 2.6 

Crucero 3.6 

Salar 1.8* 

San Pedro de Atacama 3.7* 

Puerto Angamos 2.5* 

Cerro Armazones 2.8* 

Salvador 0.5 

MRP 4 2.5 

Inca de Oro 2.6* 

MRP 5 0.3 

MRP 6 1.3 

*Validation period is not continuous. 

Table 1: Length of validation period for each site. 

 

 

As in [1], biases and root mean squared errors were 

calculated for the daily and monthly mean irradiance 

obtained from the nearest model node for each site. Table 

2 summarises the results. 

 

Site  

(from N to S) 

RMSE 

Daily [%]  

RMSE 

Monthly [%] 

Bias 

[%]  

MRP2 12.8 9.9 -5.5 

MRP1 5.6 1.9 -1.5 

P Camarones 4 1.5 -0.8 

Pozo Almonte 5.3 3.8 1.8 

MRP3 4.2 2.5 -2.3 

Crucero 3.3 1.3 -0.8 

Salar 8.8 8.4 4.5 

S Pedro de 

Atacama 
4.6 2.7 2 

P Angamos 6.7 5 2.4 

C. Armazones 4.6 2.8 -2.7 

Salvador 2.7 1.5 -0.5 

MRP4 4.8 1.8 -1.4 

Inca de Oro 3.5 1.9 -1.4 

MRP5 5.9 4.1 -3.5 

MRP6 5.5 1.6 -0.7 

Table 2: RMSE and bias of modelled data relative to 

measured data over the concurrent period. 

 

 

2.3 Inter-annual variability 

 The IAV is defined as: 

 

Where: 

- X = {Xyear 1, Xyear 2, Xyear 3, …} is the considered 

variable, in this study monthly or yearly mean 

GHI. 

-  is the standard deviation of X 

- E is the mean value of X. 

 If we consider the annual mean GHI at a site, the IAV 

will quantify statistically how far the mean GHI of one 

year is likely to deviate from the long-term mean at that 

site.  

 Mathematically, a minimum of 3 years of data are 

required to calculate a value of the IAV. In practice, 

however, a 3-year period does not capture low frequency 

modulations and is unlikely to be representative of the 

long-term IAV of the site. Where reliable long-term 

measured datasets are not available, like in the case of 

Chile, long-term modelled datasets, when they have been 

validated, are therefore the only suitable option to 

estimate the IAV. 

 Monthly, yearly sums, and IAV of the GHI were 

calculated from the satellite-derived datasets at each site. 

 

 

3 RESULTS 

 

3.1 Variability of the GHI 

Table 3 shows the IAV values calculated for the 14 

sites across the Atacama Desert, from the modelled 

datasets. For the Pozo Almonte location where a CNE 

and a MRP station operate in close vicinity, only the 

value from the MRP station is reported. 

It can be observed that there is a tendency for the 

IAV to present higher values in those stations that are 

located closer to the coast. This may be related to the 

occurrence of the coastal fog typical to parts of the 

Chilean coast, called “Camanchaca”, which can influence 

the resource at sites below a certain altitude. Overall, 

none of the studied locations shows an IAV above 2%. 

 

Sites (North to South) IAV (14 years) 

MRP2 1.8% 

MRP1+ 1.3% 

Pampa Camarones 1.1% 

MRP3 1.1% 

Crucero 0.8% 

Salar 0.9% 

San Pedro de Atacama 1.5% 

Puerto Angamos 1.8% 

Cerro Armazones 0.4% 

Salvador 0.8% 

MRP4 0.9% 

Inca de Oro 0.8% 

MRP5 0.9% 

MRP6 1.4% 

+only 13 years of data available  

Table 3: Long-term modelled average GHI and IAV. 

 

 



Figure 4 shows the spread of the yearly averages 

around the long-term average (marked by a black cross) 

for each site.  

 

 
 

Figure 4: Distribution of the individual years around the 

long-term mean (marked by a black cross). All GHI 

values are normalized to the average yearly GHI at the 

location of the MRP 1 station. IAV value at each site is 

stated in parenthesis next to the site name for reference. 

 

 

Figure 5 displays the relative difference of extreme 

years in relation to the long-term average.  

 

 
Figure 5: Relative deviation of years with lowest and 

highest GHI in relation to the long-term mean (IAV value 

in parenthesis next to site name) 

 

 

These two figures highlight that the IAV is not 

necessarily normal distributed around the long-term 

mean. In a desert region like the Atacama, where cloudy 

days are very rare, outliers tend to be on the lower side of 

the long-term average (i.e. more days with clouds) as 

opposed to on the higher side where there is a natural 

upper limit (i.e. all days without clouds).  

Describing IAV with a single number therefore may 

result in a loss of information, where two sites with the 

same IAV number may actually display quite different 

distributions (such as Puerto Angamos and MRP 2). 

 

3.2 Inter-annual variability, by month 

Tables 4a and 4b shows the inter-annual variability of 

the monthly averages, in order to identify seasonal 

patterns within the year. 

For all sites, it appears that the month with the lowest 

IAV are November and December, which is late spring 

and early summer in the southern hemisphere, with an 

IAV not exceeding 4%. During the winter months, the 

IAV is generally elevated (up to ca. 8%). 

 Additionally, most sites in the northern part of the 

study region appear to be influenced by a second pattern  

 

M
o

n
th

 

C
er

ro
 

A
rm

a
zo

n
s 

C
ru

ce
ro

 

P
a

m
p

a
 

C
a

m
a

ro
n

es
 

M
R

P
 3

 

S
a

la
r 

S
a

n
 P

. 
d

e 

A
ta

ca
m

a
 

M
R

P
 1

 

Jan 1.8 3.1 5.4 4.5 3.9 7.1 11.2 

Feb 2.9 4.3 5.0 5.8 5.5 7.8 8.9 

Mar 1.3 2.1 2.6 2.8 2.7 4.3 5.0 

Apr 1.2 1.6 3.2 2.1 1.5 1.8 1.8 

May 1.9 2.0 2.5 2.3 1.6 3.2 1.9 

Jun 1.8 2.2 3.1 1.8 1.5 3.3 1.5 

Jul 1.9 1.9 5.1 2.2 1.5 2.7 2.6 

Aug 1.1 2.1 4.0 2.5 1.8 3.0 2.4 

Sep 1.0 1.3 3.6 1.3 1.2 1.7 1.9 

Oct 0.9 1.6 1.9 1.5 1.4 1.7 1.1 

Nov 0.7 1.2 2.1 1.5 1.3 1.4 2.1 

Dec 0.7 1.2 2.9 2.0 1.5 2.0 2.6 

Table 4a: Seasonal variation of IAV (in % of GHI), 

northern inland sites affected by the “Bolivian Winter”  

 

which can lead to high IAV values in January and 

February (summer), and can exceed even the winter IAV 

values in these locations. This could be explained by the 

occurrence of the “Bolivian Winter”, which is a regional 

meteorological phenomenon in which humid air masses 

from the Amazonas region influence the north of the 

Atacama region during the summer months of some 

years, leading to increased amounts of rainfall.  

The effect is less pronounced at sites that are closer to 

the coast and sites in the southern half of the study 

region. 
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Jan 2.2 6.2 1.7 1.3 1.6 1.5 1.4 

Feb 3.6 6.1 3.9 2.6 2.4 2.8 2.7 

Mar 2.5 3.4 3.0 1.8 1.6 1.4 1.6 

Apr 3.0 6.0 3.5 2.4 1.9 2.1 2.3 

May 5.2 4.0 6.5 4.7 4.3 3.7 3.7 

Jun 4.3 7.1 6.0 4.6 3.3 3.4 3.4 

Jul 7.5 7.3 5.1 3.8 3.4 3.0 2.8 

Aug 3.4 8.4 4.6 2.7 2.0 2.0 2.3 

Sep 4.9 6.5 2.4 1.4 1.4 1.2 1.4 

Oct 4.4 2.5 3.1 2.9 2.7 1.9 2.3 

Nov 2.6 2.7 2.3 1.5 1.0 1.0 0.8 

Dec 2.2 3.7 3.0 1.0 1.2 1.5 1.2 

Table 4b: Seasonal variation of IAV (in % of GHI), 

coastal and southern sites 

 

It is noted that the most stable month can still have a 

higher variability than the annual value. This is likely to 



be a result of several mechanisms, such as annual 

weather patterns that do not always fall in the same 

month, random events over the course of the year which 

can cancel each other out or a larger sample size for the 

annual figures relative to the monthly figures. 

 

 

4 CONCLUSIONS 

 

The density of measurement locations available to 

validate the modelled data is higher than in previously 

acknowledged study and bias and RMSE are within the 

same range or lower. This suggests that the methodology 

adopted for the Mediterranean and Black Sea region is 

also suitable for the North of Chile. 

None of the sites considered in this study showed an 

IAV of the GHI above 2%. This result supports the 

working hypothesis that a generic 4% to 6% IAV figure 

used for PV projects in the North of Chile is overly 

conservative, and a 1% to 2% figure would be more 

realistic. When assessing the AEP of a PV plant using the 

best possible estimate of the IAV will impact on the 

P90/P50 ratio, thus avoiding to penalize project 

developers unnecessarily who are seeking project 

finance.  

Satellite-derived data such as SolarGIS can be a 

useful tool for estimating a project IAV value, in 

particular if a site-specific validation of this data is 

possible. Further validation of this study with long term 

ground measure datasets would be to verify that satellite-

derived irradiance datasets capture low frequency 

climatic phenomenon such as the “El Niño Southern 

Oscillation”4. 
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